搜索

基于物理模型的数字孪生建模方法

  • 分类:行业动态
  • 作者:
  • 来源:
  • 发布时间:2022-11-03
  • 访问量:0

【概要描述】本文的数字孪生体以数控机床为对象,并针对机床动力学模型、机床误差模型和机床加工过程模型等3个主要的方面来介绍数字孪生的物理建模。机床动力学模型从机床结构、性能的角度进行建模,机床误差建模则从静态误差(几何误差)、准静态误差(热误差)和动态误差(零件轮廓误差)的角度进行建模,机床的加工过程建模则从加工稳定性角度进行建模,覆盖了机床设计、运行和加工全生命周期的过程,基本涵盖了机床建模过程。

基于物理模型的数字孪生建模方法

【概要描述】本文的数字孪生体以数控机床为对象,并针对机床动力学模型、机床误差模型和机床加工过程模型等3个主要的方面来介绍数字孪生的物理建模。机床动力学模型从机床结构、性能的角度进行建模,机床误差建模则从静态误差(几何误差)、准静态误差(热误差)和动态误差(零件轮廓误差)的角度进行建模,机床的加工过程建模则从加工稳定性角度进行建模,覆盖了机床设计、运行和加工全生命周期的过程,基本涵盖了机床建模过程。

  • 分类:行业动态
  • 作者:
  • 来源:
  • 发布时间:2022-11-03
  • 访问量:0
详情

本文的数字孪生体以数控机床为对象,并针对机床动力学模型、机床误差模型和机床加工过程模型等3个主要的方面来介绍数字孪生的物理建模。机床动力学模型从机床结构、性能的角度进行建模,机床误差建模则从静态误差(几何误差)、准静态误差(热误差)和动态误差(零件轮廓误差)的角度进行建模,机床的加工过程建模则从加工稳定性角度进行建模,覆盖了机床设计、运行和加工全生命周期的过程,基本涵盖了机床建模过程。

 

 1. 物理建模的关键方法 」

 

1)有限元分析方法

 

有限元分析方法是一种成熟的建模方法,在机床物理建模中应用非常广泛。有限元是那些集合在一起时能够表示实际连续域的单个离散单元。所谓有限元分析指的是用较简单的问题代替复杂问题后再进行求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。图1为箱体网格划分结果。

 

1 箱体网格划分

 

在机床建模中使用有限元分析时,先对机床结构实体进行离散化处理,划分有限个单元,再对此进行分片插值,分析得到单元特征矩阵,最后把各单元特征矩阵组装成总特征矩阵,得到整个机构的方程组进行求解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限元法最初被称为矩阵近似方法,由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。同时随着计算机运算频率的提高和大容量存储计算机技术发展,大型有限元商用软件的不断开发和功能强化,有限元建模和分析方法的优势明显展现。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。

 

2)多体系统动力学

 

经典力学方法原则上可用于建立任意系统的微分方程,但随着系统内分体数和自由度的增多,以及分体之间约束方式的复杂化,方程的推导和求解过程变得极其繁琐。而当前的制造系统越来越复杂,经典力学方法已经难以解决日益复杂的系统问题。随着现代计算技术的飞速发展,将传统的经典力学方法与现代计算技术结合,形成了多体系统动力学的新分支,主要研究多体系统(一般由若干个柔性和刚性物体相互连接所组成)运动规律。

 

多体系统动力学主要任务包括:

 

1)建立复杂机械系统运动学和动力学程式化的数学模型,开发实现这个数学模型的软件系统,用户只需输入描述系统的最基本数据,借助计算机就能自动进行程式化的处理;

 

2)开发和实现有效的处理数学模型的计算机方法与数值积分方法,自动得到运动学规律和动力学响应;

 

3)实现有效的数据后处理,采用动画显示,图表或其他方式提供数据处理结果。

 

多体系统动力学可以用于数控机床的设计阶段、运动控制阶段。设计阶段,利用多体系统动力学的分析,仿真系统的行为,优化系统的参数和结构。运动控制阶段,利用多体系统动力学建立运动对象的物理模型,仿真运动对象的响应,在运动控制阶段进行前馈补偿,提升控制系统性能。

 

以有限元分析方法和多体系统动力学方法为基础,还可以进行切削力建模,机床的模态分析等进一步地分析,为机床的设计、运行和加工过程的分析提供分析手段。

 

 

 2. 物理建模常用工具——ABAQUS 」

 

ABAQUS是一套功能强大的工程模拟的有限元软件。其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。ABAQUS包括一个丰富的、可模拟任意几何形状的单元库。并拥有各种类型的材料模型库,可以模拟典型工程材料的性能。作为通用的模拟工具,ABAQUS除了能解决大量结构(应力、位移)问题,还可以模拟其他工程领域的许多问题,例如热传导、质量扩散、热电耦合分析、声学分析、岩土力学分析(流体渗透、应力耦合分析)及压电介质分析。ABAQUS被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题。ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究。ABAQUS的系统级分析的特点相对于其他的分析软件来说是独一无二的。(图3)

   

3 ABAQUS界面及模型建立

 

 3. 物理建模的发展趋势 」

 


 

 

传统的物理建模方法尽管已经相对成熟,但仍然存在一些问题,例如在机床的动力学建模中,机床结合部往往无法准确建模,导致整个系统的模型质量难以保证,还比如机床几何误差,热误差,切削力误差等分别属于静态误差、准静态误差、动态误差等不同性质误差的综合数学模型,如何实现综合误差的解耦补偿也是一个难题。因此,未来物理建模将会结合最新的科学研究成果,向着更全面、更高效和更精密的方向发展:

 

一方面,结合最新的物理学研究成果,尽可能多地覆盖系统的各个环节,从基本面上提升物理建模的效果。

 

另一方面,结合最新的人工智能研究成果,通过大数据建模方式对机床模型的高阶非线性的未建模动态部分进行建模,从混合的角度提升物理建模的效果。

 

南京复创是达索知名的合作伙伴,专注于为中国制造业数字化和信息化建设提供咨询服务和解决方案,主要涉及汽车、轨道交通、机械、电子、金融、教育、通讯、医疗等各大领域。

欢迎点击在线咨询了解更多相关内容。

关键词:

扫二维码用手机看

Recommended news